
Finding Vertex Cover: Acceleration Via CUDA

Yang Liu, High Performance Research Computing, Texas A&M University

Jinbin Ju, Electrical Engineering, Texas A&M University

Derek Rodriguez, Computer Engineering, Texas A&M University

Motivation

Phylogeny

Microarray Analysis

Motif Finding

https://www.youtube.com/watch?v=9U-9mlOzoZ8

http://tolweb.org/tree/learn/concepts/whatisphylogeny.html

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2286532/figure/f2/

Finding Vertex Cover: Acceleration Via CUDA Slide 2 of 18 Yang Liu - Texas A&M HPRC

 Related Problems: Maximum Clique and
Maximum Independent Set

• Clique
• A set of vertices such that there is an edge between any pair of vertices in this set.

• Independent Set
• A set of vertices such that there is no edge between any pair of vertices in this set.

Finding Vertex Cover: Acceleration Via CUDA Slide 3 of 18 Yang Liu - Texas A&M HPRC

Example of Independent Set (Blue

Vertices)

n = 12
k = 5

n = 12
k = 5

Example of Clique (Blue Vertices)

Vertex Cover

• Vertex Cover:
• A subset of vertices such that every edge is incident to at least one vertex in the subset

• Minimum Vertex Cover:
• Find a vertex cover of minimum size.

• One of Richard Karp’s 21 NP-Complete Problems

• Parameterized Vertex Cover
• Given a parameter k, find a vertex cover of size at most k.

Finding Vertex Cover: Acceleration Via CUDA Slide 4 of 18 Yang Liu - Texas A&M HPRC

Example of Vertex Covers (Red

Vertices)

n = 12
k = 7

Related Work

• These problems have been extensively studied (exact algorithms, parameterized
algorithms, approximation algorithms, and heuristics).

• Parameterized Vertex Cover
• Best parameterize algorithm: O*(1.2738k) (by Chen, et. al. 2010)

• Parallel implementation scales up to 2400 CPUs (by Weerapurage et. al. 2011).

• Independent Set
• Best exact algorithm: O*(1.1888n) (by Robson, 2001).

• W[1]-hard, i.e., unlikely to have algorithms of complexity O(f(k)p(n)) where f(k) is independent of n.

• Clique
• A problem for the second DIMACS (Discrete Mathematics & Theoretical Computer Science) implementation

Challenge: 1992-1993.

Finding Vertex Cover: Acceleration Via CUDA Slide 5 of 18 Yang Liu - Texas A&M HPRC

Branching Process

Slide 6 of 18 Yang Liu - Texas A&M HPRC

Branch Searching Process

Branching Process
• Find max degree vertex v

• Two branch sets: v is in vertex cover or v’s

neighbors are in vertex cover

Finding Vertex Cover: Acceleration Via CUDA

n = 12
k = 7

n = 11
k = 6

n = 8
k = 4

|G’|= |G| -1
k = k -1

|G’|= |G| - |N| - 1
k = k -|N|

 Branching Process—Threshold for GPU Processing

Slide 7 of 18 Yang Liu - Texas A&M HPRC

Branch Searching Process

Branching Process
• Find max degree vertex v

• Two branch sets: v is in vertex cover or v’s

neighbors are in vertex cover

Finding Vertex Cover: Acceleration Via CUDA

n = 12
k = 7

n = 11
k = 6

n = 8
k = 4

|G’|= |G| -1
k = k -1

|G’|= |G| - |N| - 1
k = k -|N|

When n <= Threshold, send to GPU
for further processing

 Synchronization between CPU and GPU

Slide 8 of 18 Yang Liu - Texas A&M HPRC

Branch Searching Process

Branching Process
• Find max degree vertex v

• Two branch sets: v is in vertex cover or v’s

neighbors are in vertex cover

Finding Vertex Cover: Acceleration Via CUDA

CPU:

While (there is a graph to branch){
 branch and create a small graph // n <= THRESHOLD
 if (a vertex cover is found by kernel)
 return;
 if (SMALL-GRAPH-COUNT small graphs are created){
 start kernel to process SMALL-GRAPH-COUNT small graphs
 //can overlap with creation of small graphs
 }
}

Synchronization between CPU and GPU:
Kernel and CPU communicate on solution state (vertex cover is found
or not) via memory copy from GPU to CPU.
(We tried mapped memory, but somehow our program is unstable,
and very difficult to debug)

 GPU Memory Hierarchy

Slide 9 of 18 Yang Liu - Texas A&M HPRC Finding Vertex Cover: Acceleration Via CUDA

https://www.quantalea.net/media/_doc/2/7/manual/index.html?GPUHardwareImplementation.html

CUDA Application Design and Development, Rob Farber, 2012.

Memory Bandwidth

Register

Memory

~8,000 GB/s

Shared Memory ~1,600 GB/s

Global Memory ~177 GB/s

Mapped

Memory

~8 GB/s

 Placement of Small Graphs in GPU

Slide 10 of 18 Yang Liu - Texas A&M HPRC Finding Vertex Cover: Acceleration Via CUDA

https://www.quantalea.net/media/_doc/2/7/manual/index.html?GPUHardwareImplementation.html

CUDA Application Design and Development, Rob Farber, 2012.

• A small sub-graph in shared memory for each block

• Only 48K bytes per SM (Streaming Multiprocessor) This limits

 the THRESHOLD for small sub-graphs

• Maximum concurrent blocks per SM is 16 (then each block has

 only 3k shared memory) this limits the THRESHOLD for small

 sub-graphs too.

Memory Bandwidth

Register

Memory

~8,000 GB/s

Shared Memory ~1,600 GB/s

Global Memory ~177 GB/s

Mapped

Memory

~8 GB/s

 Occupancy and Performance

Slide 11 of 18 Yang Liu - Texas A&M HPRC

• Tesla K20: 192 cores per SM, max active 64

warps (32 threads/warp), max resident 16 blocks

• More warps and/or blocks than 192 cores can

actually execute fast context switching to hide

memory access latency.

• Occupancy: active warps/64 higher occupancy

is likely hide more memory latency, but not

necessary implies better performance (see Better

Performance at Lower Occupancy).

• Our program aims to have occupancy of 25%: 16

resident blocks so that 16 small graphs (<3K

each) can be processed concurrently in each SM.

Finding Vertex Cover: Acceleration Via CUDA

http://www.pcper.com/reviews/Graphics-Cards/NVIDIA-Reveals-GK110-GPU-Kepler-71B-Transistors-15-SMX-Units

http://www.pcper.com/image/view/13585?return=node/54378

 Configurations for GPU Processing

Slide 12 of 18 Yang Liu - Texas A&M HPRC

• 2000 blocks

• Allow maximum number of small graphs to be processed concurrently (Tesla K20

allows 13*16=208 blocks resident in shared memory)

• reduce the overhead of memory copy

• possibly reduce the impact of imbalanced computations among blocks.

• 32 threads per block

• A warp for easy synchronization.

• Number of threads per block determines the amount of shared memory needed by

a block affect the occupancy.

• Each block processes a small graph with vertices <= 80 (if available)

• Number of vertices of a small graph determines the amount of shared memory

needed by a block affect the occupancy.

Finding Vertex Cover: Acceleration Via CUDA

 Occupancy and Performance of Our Program

Slide 13 of 18 Yang Liu - Texas A&M HPRC

• Current occupancy of our program is 25% (16 active warps/blocks per SM).

• Our tests show this configuration achieves the best performance in general

• A particular graph may achieve better performance with different configurations.

• Some graphs have bottleneck on cpu side while some graphs have bottleneck on

gpu side.

• Number of registers per thread and shared memory per block how many blocks can

run concurrently

• nvcc ---ptxas-options=-v provides such information

• Our program: 69 registers per thread, and 2976 bytes shared memory per block

Finding Vertex Cover: Acceleration Via CUDA

Test Data

Slide 14 of 18 Yang Liu - Texas A&M HPRC

• Provided by Michael Langston and Gary Rogers.

• Created from real biological data related to

• Folic acid deficiency effect on colon cancer cells (fo30, fo35, fo40, fo45)

• Low concentrations of 17 beta-estradiol effects on breast cancer cell line (es30,

es35, es40, es45)

• Interferon receptor deficient Iymph node B cell response to influenza infection

(in30, in35, in40, in45)

• Each test data is tested with two k values:

• k = t when there is a vertex cover of at most t vertices

• k = t-1 where there are no vertex covers of at most t-1 vertices.

Finding Vertex Cover: Acceleration Via CUDA

Test Results

Finding Vertex Cover: Acceleration Via CUDA Slide 15 of 18 Yang Liu - Texas A&M HPRC

Speedup of CPU+GPU Program Over Serial Program
Graph-k Serial (seconds) CPU+GPU (seconds)

est30-k981 11679.7356 885.6192

est30-k982 3501.296 283.3502

est35-k983 3143.042 254.1331

est35-k984 327.1932 29.5715

est40-k984 849.564 53.2437

est40-k985 113.1256 7.5073

est45-k986 295.9202 33.608

est45-k987 6.523 2.5577

fo30-k982 31337.2464 1895.7333

fo30-k983 1782.8224 124.2507

fo30-k984 6.709 1.0532

fo35-k984 7110.7688 649.9995

fo35-k985 277.7758 27.9412

fo40-k985 2208.4914 200.178

fo40-k986 156.8424 12.2987

fo45-k986 574.8578 54.863

fo45-k987 44.4756 6.2211

inf30-k883 1574.9104 136.54

inf30-k884 366.9082 22.1952

inf35-k884 426.7548 23.6902

inf35-k885 404.494 21.9723

inf40-k886 156.3758 16.5719

inf40-k887 16.1454 3.2252

inf45-k887 75.0088 12.4427

inf45-k888 0.9464 1.3148

Test Environment

• Ada X86-64 Cluster at Texas A&M University (862 nodes)

• Intel E5-2670 v2 (peak performance: 400 GFLOPS)

• Nvidia K20 (peak performance: 3.52 TFLOPS)

• CUDA 6.5.14 and Intel Compiler 2013_sp.1.3.174

Finding Vertex Cover: Acceleration Via CUDA Slide 16 of 18 Yang Liu - Texas A&M HPRC

Acknowledgements

• Support from NSF grant 1442734.

• Support from High Performance Research Computing at Texas A&M University

• Test data provided by Michael Langston and Gary Rogers

• Discussions on CUDA with Robert Crovella

Finding Vertex Cover: Acceleration Via CUDA Slide 17 of 18 Yang Liu - Texas A&M HPRC

Q & A

Thank You!

Finding Vertex Cover: Acceleration Via CUDA Slide 18 of 18 Yang Liu - Texas A&M HPRC

