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Motivation & computational challenge
Most flows of practical interest are turbulent

• High Reynolds numbers (Re) with wide range of spatial
and temporal scales

Re =
uL

ν
∝ R2

λ

u: characteristic velocity
L: characteristic length
ν: kinematic viscosity
Rλ: Taylor‘s Reynolds number

Controlling turbulence: improved energy efficiency

Wind turbine farms

www.boggawind.com

thecostaricanews.com wikipedia.org

Hydroelectric turbines High-speed combustion

How do we study turbulence?
Resolving all scales: extreme computational cost

Domain > L : Integral length scale (largest scale)
Grid Spacing < η : Kolmogorov microscale (smallest scale)

Computational work scales as: W ∝ R
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Dashed lines: perfect scaling

Different symbols correspond to differ-

ent supercomputers[1]
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Turbulence control: generation and mitigation
How can turbulence be generated or controlled?

• Classical approach: grid turbulence

• New method: laser-controlled turbulence[2,4]

✲

An album of fluid motion, Van Dyke
∼ 1700 m/s

Cl atoms arising from 355 nm photo-dissociation
of Cl2 (Courtesy of Dr. Simon North)

• Lasers can photo-dissociate molecules

– Fragments with very large velocities + TNE[3]

Two sources of energy (kinetic and internal):
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Relative importance parameter: Q = ∆Kl

∆el
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Qualitatively different evolution: Q controls turbulence
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Fully developed turbulence

• Small Q: increased viscosity (high T ) reduces turbulence

• Large Q: triggers turbulence

Studying complex systems with high Q: extreme computational cost

Shock turbulence interaction
When turbulent flows pass through a shock:

• Turbulence characteristics change

• Shock structure weakened

• Thermodynamic quantities 6= f(M1)

• Rankine-Hugoint relations no longer applicable

supersonic flight

X-15, NASA
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Shock structure quantification:

Θ ≡
〈(θ̃ − 〈θ̃〉)2〉1/2

〈θ̃〉
≈ f(

Mt

∆M
)

θ̃: local min (div ~V )

Mt: turbulent Mach number

∆M : Mach number minus unity
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• Turbulence effects on shock are significant and quantifiable

• High computational cost in broken regime due to turbulence strength

Impact

• Controlling turbulence can drastically improve efficiency,
reduce drag and friction losses

– Energy generating technologies, wind farms and hy-
droelectric turbines

– Commercial aircraft, hypersonic vehicles

• Novel techniques for shock structure analysis due to shock
turbulence interaction

• Understanding interactions can significantly lead to better
flow control

– Accurate calculation of turbulent shock jumps

– Turbulent characteristics predictable
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