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Selective Laser Melting Phase Field

A 3D FE model was used to study the thermal behavior during selective laser melting (SLM) Thermodynamics & Kinetics of the Phase Field Modeling of Joint Formation During
of TicAl,V through the use of Comsol Multiphysics software _ _ U-Nb fuel system Isothermal Solidification in 3DIC Micro Packaging
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Mechanical Properties of Tis(Al,Si)AlIC; - - : Solid solution alloying characteristics using cluster expansions
Finite-temperature phase stability of (Ti,Cr),AlC in MAX phases
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