
	
	
	 	
	
	
	

1	

TUTORIAL	1	(by	M.	J.	Demkowicz,	all	rights	reserved)	

	

VISUALIZING	ATOMIC	STRUCTURES	

	

A	big	part	of	understanding	atomistic	models	is	being	able	to	visualize	them.	This	

tutorial	will	explain	how	to	make	use	of	some	basic	visualization	software,	build	

models	of	perfect	single	crystals,	and	create	vacancies	and	free	surfaces	in	them.	

	

	

Connecting	to	HPRC	

Throughout	this	tutorial,	we	will	be	using	a	virtual	portal	to	the	ada	computer	at	

HPRC.	To	connect,	you	will	need	a	valid	NetID,	active	VPN	and	Duo	access	setup,	and	

a	basic	HPRC	allocation.	I	hope	you	were	all	able	to	get	this	arranged	prior	to	this	

tutorial!	

	

Start	out	by	logging	in	to	VPN.	Next,	navigate	the	to	ada	portal:	

	

portal-ada.hprc.tamu.edu	

	

If	you	would	like	to	learn	more	about	how	this	portal	works,	you	can	view	an	online	

primer	here:	https://youtu.be/dqa2ZzsEmQs.	The	portal	includes	an	easy	interface	

for	file	transfer	and	a	built-in	editor.	You	can	upload	and	download	files	using	the	

“files”	menu.	Note:	please	use	your	scratch	directory,	not	your	home	directory	for	

file	upload/download!	

	

Go	to	the	“interactive	apps”	menu	and	select	VNC.	You	will	be	prompted	for	some	

input.	Please	put	in	the	following:	

• Number	of	hours:	4	

	
	
	 	
	
	
	

2	

• Number	of	cores:	1	

• Memory	per	core	(GB):	2	

• Node	type:	any	

• Account,	email:	you	can	leave	these	fields	blank	

Press	“launch”	and	wait	a	minute.	Press	the	“Launch	noVNC	in	New	Tab”	button	

once	it	shows	up.	Now	you	should	see	a	virtual	desktop	with	one	open	command	

line	interface	in	your	browser.	

	

Go	to	the	command	line	and	issue	the	following	two	commands:	

• cd	/scratch/user/***user	name***,	where	***user	name***	is	your	NetID	

• ml	AtomEye/A3	

Now	you	are	all	set	up	for	the	present	tutorial.	Once	you	are	done	with	it,	please	log	

yourself	out	completely	by	doing	the	following	two	things:	

• Type	“exit”	in	the	command	line	

• Go	to	the	tab	in	your	web	browser	where	the	VNC	session	is	running	and	

press	“delete”	(note:	don’t	do	this	in	a	tab	with	your	file	transfer	or	you’ll	

inadvertently	delete	files!).	

	

	

AtomEye	

There	are	numerous	visualization	packages	available	as	freeware	online.	We	will	go	

over	how	to	use	a	specific	package	called	AtomEye.	The	package	has	already	been	

pre-installed	on	ada,	but,	if	you	want	to	run	it	on	your	own	computer,	you	can	visit	

this	site	and	see	if	there’s	a	version	you	can	download:	

	

http://li.mit.edu/Archive/Graphics/A/	

	

	
	
	 	
	
	
	

3	

This	site	also	contains	a	lot	of	useful	info,	including	manuals,	a	gallery,	and	sample	

structure	files.	

	

Now	let’s	visualize	something.	Click	“gallery”	on	the	top/center	of	the	AtomEye	

home	page.	This	gives	you	a	bunch	of	pictures	labeled	with	links	to	files	that	contain	

the	structure	file	that	was	used	to	create	the	picture.	Download	one	of	the	structure	

files	to	the	directory	with	your	AtomEye	executable.	I	chose	the	file	“DNA.pdb.”	

	

In	your	AtomEye	directory,	issue	the	command	

	

A3	DNA.pdb	

	 	

A	window	should	open	up	with	the	following	view:	

	
	

NOTES:	

• When	it’s	running,	AtomEye	will	occupy	your	command	line.	You	may	want	

to	open	a	new	terminal	window,	if	you	want	to	issue	additional	commands	

while	you	have	AtomEye	on.	You	can	do	that	by	right-clicking	and	choosing	

the	appropriate	entry	in	the	pop-up	menu.	Alternatively,	you	can	open	a	new	

window	before	running	AtomEye	by	issuing	the	following	command:	

	

xterm	&	

	
	
	 	
	
	
	

4	

	

• If	you	are	using	some	different	platform	(e.g.,	your	own	computer)	and	your	

AtomEye	executable	has	some	name	other	than	A3,	then	substitute	that	name	

for	“A3”	in	the	above	command.	Similarly,	if	DNA.pdb	is	not	the	structure	file	

you	downloaded,	then	substitute	the	name	of	your	file	for	“DNA.pdb”	in	the	

command	given	above.	

	

This	picture	doesn’t	look	much	like	a	DNA	molecule	because	you’re	looking	along	its	

axis.	To	see	it	for	the	double	helix	that	it	actually	is,	rotate	the	picture	by	clicking	and	

dragging	with	your	mouse.	After	re-orienting	the	image,	I	get	something	that	looks	

more	like	DNA:	

	
	

One	of	the	reasons	why	I	like	AtomEye	is	that	it’s	a	simple	program	that	offers	a	lot	

of	functionality,	but	isn’t	too	complicated	to	use.	For	example,	to	create	a	.jpg	picture	

of	what	you	see	in	AtomEye,	simply	press	the	button	“j.”	You	will	be	prompted	to	

enter	the	name	of	your	file	(the	program	appends	the	“.jpg”	suffix	automatically).	

And	that’s	it,	you’re	done.	You	should	now	see	a	.jpg	file	with	the	name	your	chose	in	

the	directory	from	which	you	ran	AtomEye.	

	

	
	
	 	
	
	
	

5	

On	the	top/center	of	the	AtomEye	home	page,	you	can	find	a	link	labeled	“manual”	

that	will	show	you	how	easy	it	is	to	do	things	like	change	between	perspective	to	

parallel	projections,	change	the	sizes	and	colors	of	atoms,	visualize	bonds,	etc.	I	

highly	recommend	that	you	spend	a	few	minutes	toying	around	with	the	

possibilities	to	get	familiar	with	the	program.	

	

	

Periodic	boundary	conditions	

In	the	above	two	pictures,	you	see	that	the	DNA	structure	is	enclosed	in	a	box.	This	

is	called	the	“simulation	cell”	or	“supercell”	of	the	atomic	model.	It	defines	a	region	

inside	of	which	the	atoms	of	the	model	are	located.	What	happens	at	the	walls	of	the	

simulation	cell?	

	

Like	most	atomic	modeling	packages,	AtomEye	imposes	“periodic	boundary	

conditions”	at	the	simulation	cell	walls.	That	means	that	atoms	that	leave	the	cell	

through	one	wall	return	back	into	the	cell	through	the	opposite	wall.	The	easiest	

way	to	see	this	is	to	try	it:	hold	down	“shift”	and	drag	the	DNA	molecule	to	the	right	

in	AtomEye.	You	will	see	atoms	disappearing	on	the	far	right	side	and	re-emerging	

on	the	far	left	side,	as	shown	below.	That’s	how	periodic	boundary	conditions	work.	

Similar	things	happen	if	you	try	moving	the	molecule	up:	atoms	disappear	on	the	top	

and	come	out	on	the	bottom.	

	
	
	 	
	
	
	

6	

	
	

Although	they	may	seem	a	little	strange	at	first,	periodic	boundary	conditions	are	

actually	a	great	convenience	in	modeling	atomic	structures.	Thanks	to	them,	you	can	

create	a	model	containing	a	relatively	small	number	of	atoms	that	behaves	as	a	

“quasi-infinite”	system.	This	can	be	achieved	if	you	construct	your	model	such	that	

the	atoms	at	one	surface	of	the	simulation	cell	align	perfectly	with	the	atoms	at	the	

opposite	surface.	To	see	what	I	mean,	open	file	“Nanotube8x3x1.pdb”	from	the	

AtomEye	gallery	and	translate	it	parallel	to	the	nanotube	axis	(as	before,	drag	with	

your	mouse	while	holding	“shift”).	

	

	

Making	a	model	of	a	crystal	

Whenever	you	apply	periodic	boundary	conditions	(PBCs,	for	short)	to	a	simulation	

cell,	you	are	in	fact	turning	a	finite	system	in	a	quasi-infinite	system.	For	example,	

the	file	with	the	DNA	is	really	not	a	single	section	of	DNA,	but	an	infinite	array	of	

such	sections	repeated	throughout	3-D	space.	The	array	is	symmetric	with	respect	

to	translations	equal	to	the	lengths	of	the	simulation	cell.	

	

If	this	makes	you	think	of	the	repeating	unit	cells	of	crystals,	then	you’re	on	the	right	

track.	Periodic	boundary	conditions	are	very	useful	as	a	way	of	creating	“quasi-

	
	
	 	
	
	
	

7	

infinite”	atomic	models	of	single	crystals	without	having	to	specify	the	locations	of	

an	infinite	number	of	atoms.	Here’s	how	to	create	such	a	model.	

	

Let’s	make	a	model	of	a	simple	cubic	crystal	under	periodic	boundary	conditions.	

The	only	simple	cubic	element	is	polonium	(Po),	which	has	a	cubic	lattice	parameter	

of	3.36Å.	Theoretically,	we	could	make	the	model	using	just	one	unit	cell	under	

periodic	boundary	conditions,	but	since	I	later	want	to	use	this	model	to	make	some	

crystal	defects,	I’ll	construct	it	using	10x10x10	unit	cells.	

	

I	will	construct	the	model	using	(what	I	consider	to	be)	the	simplest	structure	file	

format	used	by	AtomEye:	the	.cfg	file.	To	learn	about	it,	go	to	AtomEye	home	page	

and	click	“file	formats”	on	the	top/left	and	scroll	down	to	the	heading	“standard	CFG	

format.”	You	will	see	a	brief	explanation	of	the	format	followed	by	a	sample	that	

looks	like	this:	

	
	

Copy	and	paste	this	into	a	new	text	file:	this	will	be	a	template	that	we	will	modify	to	

create	our	single	crystal	model.	Use	any	text	editor	you	like,	but	make	sure	that	you	

	
	
	 	
	
	
	

8	

save	this	as	a	simple,	ASCII	text	file	and	not	something	else	like	an	MS-Word	file.	

Also,	make	sure	that	the	suffix	is	“.cfg”	and	not	“.txt”	or	anything	else.	I	saved	my	file	

as	“sc_Po.cfg”	to	help	me	remember	what’s	in	it.	

	

We	will	focus	on	modifying	parts	A,	B1/B2/B3,	C,	and	D	in	the	.cfg	file,	indicated	

below.	

	
Part	A	is	the	number	of	atoms	in	our	model.	Since	we	are	making	a	10x10x10	simple	

cubic	structure	and	since	there	is	only	one	atom	per	unit	cell	in	this	structure,	the	

total	number	of	atoms	is	1000.	Thus,	change	the	entry	in	A	to	1000.	

	

	
	
	 	
	
	
	

9	

Parts	B1,	B2,	and	B3	describe	the	size	and	shape	of	the	simulation	cell.	Each	of	these	

entries	is	actually	a	3-D	vector:	it	contains	three	numbers.	Each	vector	describes	the	

length	and	orientation	of	one	of	the	simulation	cell	edges.	We	want	a	model	

containing	10x10x10	unit	cells,	so	the	simulation	cell	lengths	“l”	are	equal	to	ten	

times	the	lattice	parameter	of	Po:	l=10*3.36Å=33.6Å.	Since	we	are	building	a	simple	

cubic	crystal,	the	three	edges	of	our	unit	cell	will	be	oriented	parallel	to	the	x-,	y-,	

and	z-directions.	The	three	vectors	that	describe	the	simulation	cell	are	illustrated	

below.	

	
	

Change	the	entries	in	B1,	B2,	and	B3	to	reflect	this	geometry	as	follows:	

For	B1:	

H0(1,1) = 33.6 A
H0(1,2) = 0 A
H0(1,3) = 0 A	

For	B2:	

H0(2,1) = 0 A
H0(2,2) = 33.6 A
H0(2,3) = 0 A	

For	B3:	

H0(3,1) = 0 A
H0(3,2) = 0 A

H0(3,3) = 33.6 A	

	

Note	that	the	units	of	length	are	Angstroms	(Å),	where	1Å=10-10m.	These	units	are	

very	convenient	for	working	with	atomic	systems,	e.g.	the	radius	of	a	hydrogen	atom	

	
	
	 	
	
	
	

10	

is	about	0.5Å	and	the	typical	nearest-neighbor	distance	between	metal	atoms	in	a	

solid	is	2-3Å.	We	will	always	use	Å	unless	otherwise	stated.	

	

Part	C	are	the	locations	of	all	the	atoms	in	the	model.	Each	row	stands	for	one	atom.	

In	our	model,	there	will	be	1000	atoms,	so	there	should	be	1000	rows	in	this	section.	

Please,	please,	PLEASE	do	not	type	out	all	1000	rows	by	hand!	Write	yourself	a	

program	or	a	script	to	write	all	those	rows	for	you.	I	like	to	do	this	using	MATLAB.	

To	run	MATLAB	in	your	VNC	session,	issue	the	following	two	commands:	

• ml	Matlab/R2019a	

• matlab	&	

The	MATLAB	GUI	should	open	up	in	your	VNC	tab.	

	

Each	row	has	8	entries.	The	first	is	the	mass	of	the	atom	in	atomic	units.	For	Po,	this	

is	209.0.	The	second	entry	is	the	chemical	symbol	of	the	atom,	so	in	our	case	just	

“Po.”	The	next	three	entries	are	the	atom	coordinates	in	reduced	units	(more	on	this	

below)	and	the	last	three	entries	are	the	three	components	of	the	atomic	velocity	

vector,	all	of	which	we	will	set	to	zero.	Thus,	the	entry	for	a	Po	atom	located	at	

coordinates	(0.2,0.0,0.9)	would	be	

	

209.0 Po 0.2 0.0 0.9 0 0 0	

	

To	compute	the	locations	of	all	the	atoms	in	our	model,	we	simply	replicate	a	simple	

cubic	unit	cell	of	Po	10x10x10	times.	I	will	choose	a	unit	cell	description	where	the	

atom	is	located	in	a	corner	at	the	origin.	Thus,	the	coordinates	of	my	first	atom	are	

	

(0.0Å,	0.0Å,	0.0Å)	

	

	
	
	 	
	
	
	

11	

I	next	create	a	replica	of	my	unit	cell	displaced	by	one	lattice	parameter	in	the	x-

direction.	Thus,	the	location	of	my	second	atom	is	

	

(3.36Å,	0.0Å,	0.0Å)	

	

I	continue	to	replicate	the	unit	cell	in	the	x-direction	until	I’ve	put	in	10	atoms.	The	

coordinates	of	my	10th	atom	are	

	

(30.24Å,	0.0Å,	0.0Å)	

	

Notice	that	I	do	not	put	an	atom	at	the	far	corner	of	the	simulation	cell,	(33.6Å,	0.0Å,	

0.0Å),	because	under	periodic	boundary	conditions	this	location	is	identical	to	the	

location	of	the	origin,	(0.0Å,	0.0Å,	0.0Å)!	If	I	had	put	an	atom	at	the	origin	and	at	

(33.6Å,	0.0Å,	0.0Å)	then	I	would	have	created	two	atoms	at	the	same	location.	This	is	

a	big	no-no	because	it’s	unphysical.	Suppose	you	tried	to	bring	two	real	atomic	

nuclei	so	close	together	that	they	actually	overlap.	Since	both	nuclei	are	positively	

charged,	the	potential	energy	of	the	pair	goes	to	infinity	as	you	bring	them	closer	

and	closer	together.	Thus,	overlapping	atoms	are	states	of	matter	with	“infinite	

energy.”	Later	when	we	start	doing	molecular	dynamics	(MD)	simulations,	you	may	

see	that	this	kind	of	oversight	generates	error	messages	or,	in	some	cases,	makes	the	

code	crash.	

	

After	I’ve	finished	replicating	the	cubic	unit	cell	10	times	in	the	x-direction,	I	

advance	the	y-coordinate	by	3.36Å	and	again	replicate	the	unit	cell	10	times	in	the	x-

direction.	I	continue	to	repeat	this	process	until	I’ve	advanced	my	y-coordinate	

value	to	30.24Å	(not	33.6Å,	for	the	same	reasons	as	mentioned	before!).	Next	I	

advance	my	z-coordinate	by	3.36Å	and	continue	replicating	the	unit	cells	until	I’ve	

	
	
	 	
	
	
	

12	

filled	the	simulation	cell.	In	pseudo	code,	the	process	of	creating	all	the	atomic	

coordinates	can	be	viewed	as	three	nested	loops:	

	
a=3.36
N=0
for k=0:9
 for j=0:9
 for i=0:9
 N=N+1
 X(N)=i*a
 Y(N)=j*a
 Z(N)=k*a
 end
 end
end

	

This	creates	arrays	X,	Y,	and	Z	of	size	1000	containing	all	the	atomic	coordinates	in	Å	

units.	Now	we	just	have	to	convert	these	to	coordinates	in	reduced	units,	(sx,	sy,	sz).	

Reduced	units	are	defined	using	a	matrix-vector	product:	

	

!
"
#
$
% = '(∙ *

+,
+-
+.
/	

	

'(is	a	3x3	matrix	whose	columns	are	the	entries	in	B1,	B2,	and	B3	(i.e.	the	vectors	
that	define	the	edges	of	the	simulation	cell):	

	

'(= 0
ℎ0(1,1) ℎ0(2,1) ℎ0(3,1)
ℎ0(1,2) ℎ0(2,2) ℎ0(3,2)
ℎ0(1,3) ℎ0(2,3) ℎ0(3,3)

9	

	

Note	that,	unfortunately,	the	.cfg	format	does	not	use	the	usual	convention	for	

indexing	matrix	rows	and	columns.	Instead,	the	first	index	(i)	in	H0(i,j)	denotes	the	

column	while	the	second	one	(j)	denotes	the	row.	If	we	know	the	coordinate	in	Å,	

(X,Y,Z)	and	the	matrix	'(,	we	can	compute	the	reduced	coordinates	as	

	
	
	 	
	
	
	

13	

	

*
+,
+-
+.
/ = '(!" ∙ !

"
#
$
%	

	

where	'(!"	is	the	inverse	of	'(.	In	our	structure,	
	

'(= !
33.6 0 0
0 33.6 0
0 0 33.6

%Å	

	

Thus,	

'(!" = !
1 33.6⁄ 0 0
0 1 33.6⁄ 0
0 0 1 33.6⁄

%/	Å	

and	

*
+,
+-
+.
/ = !

" 33.6⁄
33.6⁄
$ 33.6⁄

%.	

	

Notice	that	all	the	reduced	coordinates	have	values	between	zero	and	one.	You	can	

imagine	the	process	of	converting	to	reduced	coordinates	as	the	process	of	

squeezing	down	your	simulation	cell	into	a	perfect	cube	of	unit	dimensions	in	all	

directions.	You	are	now	ready	to	write	the	atomic	positions	to	your	.cfg	file.	

	

Finally,	there	is	part	D:	delete	this	part	and	save	your	file.	Now	you’re	done.	I	have	

posted	the	completed	structure	file	online	so	you	can	compare	it	with	the	file	you	

created.	You	should	now	be	able	to	open	your	file	using	AtomEye	and	see	something	

like	this	(use	the	“page	up”	and	“page	down”	buttons	to	adjust	atom	radii,	if	

necessary):	

	
	
	 	
	
	
	

14	

	
Now	let’s	tell	AtomEye	what	is	the	nearest	neighbor	distance	in	this	model.	While	in	

AtomEye,	press	“r.”	Next,	hold	down	“control”	and	repeatedly	press	the	“home”	

button	until	the	value	of	“rcut(A,A)”	shown	in	the	AtomEye	text	window	exceeds	

3.36,	which	is	the	interatomic	distance	in	our	model.	Finally,	press	“r”	again.	Now	

that	AtomEye	knows	the	distance	between	nearest	neighbors,	it	can	show	you	the	

bonding	between	them.	Press	“b.”	You	should	see	this:	

	
Notice	how	the	bonds	make	cubic	boxes,	just	as	we	would	expect	in	a	simple	cubic	

structure.	To	convince	yourself	that	this	is	indeed	a	quasi-infinite	crystal	under	

PBCs,	move	the	atoms	inside	the	simulation	cell	by	dragging	with	the	mouse	while	

holding	“shift.”	

	

Making	a	model	of	a	vacancy	

Copy	the	file	with	your	model	of	perfect	crystal	Po	into	a	new	file,	which	we	will	

modify	to	create	a	vacancy.	I	named	the	new	file	“sc_Po-vac.cfg.”	Open	this	new	file,	

	
	
	 	
	
	
	

15	

change	the	number	of	atoms	from	1000	to	999.	Delete	the	first	row	in	part	C.	You	

now	have	a	model	of	a	vacancy	in	an	otherwise	perfect	crystal	of	Po.	Open	the	file	

with	AtomEye.	If	the	nearest	neighbor	distance	in	the	program	is	set	to	a	value	

greater	than	3.36Å,	then	pressing	“k”	will	give	the	same	color	to	all	atoms	with	a	

given	number	of	nearest	neighbors.	The	atoms	next	to	a	vacancy	have	one	nearest	

neighbor	less	than	all	other	atoms,	so	they	will	be	colored	differently	from	the	other	

atoms,	as	shown	below:	

	
It’s	often	easier	to	see	defects	if	you	suppress	all	the	atoms	with	perfect	crystalline	

environments.	While	holding	control	and	shift,	right	click	on	one	of	the	atoms	with	a	

perfect	crystalline	environment	(red,	in	the	picture	above).	This	will	make	all	

perfect	crystal	atoms	disappear	and	you’ll	only	see	the	atoms	neighboring	the	

vacancy:	

	
	

	

Making	a	model	of	a	free	surface	

	
	
	 	
	
	
	

16	

You	can	create	a	model	of	a	free	surface	by	increasing	the	size	of	the	simulation	cell	

in	one	direction	while	keeping	all	the	real	(not	reduced!)	atomic	coordinates	fixed.	

For	example,	suppose	we	double	the	simulation	cell	size	in	the	z-direction.	From	the	

definition	of	how	to	compute	reduced	units,	we	get	

	

*
+,
+-
+.
/ = !

33.6 0 0
0 33.6 0
0 0 67.2

%
!#

!
"
#
$
% = !

" 33.6⁄
33.6⁄
$ 67.2⁄

%	

	

Thus,	starting	from	a	model	of	a	perfect	Po	crystal,	we	have	to	do	two	things	to	

create	a	free	surface:	

1. Double	the	value	of	H0(3,3)	in	part	B3	

2. Halve	the	reduced	z-coordinates	of	all	the	atoms	in	part	C	

You	should	get	something	like	this	(file	“sc_Po-fs.cfg”):	

	
Note	that	if	you	just	did	the	first	step	and	not	the	second	step,	this	would	stretch	

your	crystal	in	the	z-direction,	but	would	not	create	a	free	surface.	What	would	

happen	if	you	only	did	the	second	step	and	not	the	first	step?	

	
	
	 	
	
	
	

1	

TUTORIAL	2	(by	M.	J.	Demkowicz,	all	rights	reserved)	

	

	

COMPUTING	ENERGIES	OF	ATOMIC	STRUCTURES	IN	LAMMPS	

	

We	are	often	unable	to	make	analytical	calculations	describing	the	behavior	of	

complex	atomic	structures,	such	as	defect	clustering	or	vacancy-interstitial	

recombination.	Atomistic	modeling	has	been	a	very	important	source	of	information	

concerning	such	behaviors,	especially	since	many	of	them	are	also	very	difficult	to	

study	experimentally.	This	tutorial	will	show	how	to	make	some	basic	calculations	

of	defect	properties	using	a	freely	available	atomistic	modeling	code	called	

LAMMPS.	

	

	

Atomic	interactions	

	

The	energy	of	a	set	of	atoms	 	denoted	by	their	locations,	 	(i=1…N,	N=number	

of	atoms),	consists	of	the	electrostatic	interactions	between	the	atomic	nuclei,	the	

interactions	between	the	nuclei	and	the	electrons,	and	the	interaction	between	the	

electrons.	The	first	of	these	terms	can	be	computed	simply	by	treating	nuclei	as	

classical	point	masses	with	charge.	Quantum	mechanics	is	required	to	treat	the	

nucleus-electron	and	electron-electron	interactions	and	this	is	a	very	challenging	

task	in	itself.	Suppose,	however,	that	we	restrict	ourselves	purely	to	considering	

electrons	in	their	ground	state,	i.e.	we	neglect	any	electronic	excitations.	

	

We	know	from	quantum	mechanics	that	for	given	nucleus	locations	(i.e.,	for	given	

“external	potential”),	the	electrons	have	a	single,	unique	ground	state	with	an	

associated	energy,	E1.	That	means	that	in	principle	we	can	also	write	the	electron	


x
i{ }


x
i

	
	
	 	
	
	
	

2	

ground	state	energy	as	a	function	of	the	nuclear	coordinates:	 .	In	

practice,	writing	down	that	dependence	may	be	a	very	difficult	thing	to	do,	but	the	

mere	possibility	of	doing	it	provides	the	intellectual	underpinning	for	a	very	popular	

method	of	modeling	interatomic	interactions:	the	classical	potential	method.	

	

Since	the	nucleus-nucleus	interaction	energies	can	be	written	directly	as	a	function	

of	 	and	the	nucleus-electron	and	electron-electron	may	be	parameterized	in	

terms	of	 	(because	the	electronic	ground	state	is	unique	for	given),	that	

means	we	can	in	fact	write	down	the	total	ground	state	potential	energy	of	an	

atomic	system,	V,	as	a	function	of	the	nuclear	coordinates	alone:	

	

.	

	

V	behaves	just	like	any	other	classical	potential.	For	example,	we	may	determine	the	

force	on	any	given	atom	j	by	taking	the	derivative	of	V	with	respect	to	the	position	of	

that	atom:	

.	

	

Using	classical	potentials	provides	some	advantages	over	first	principles	

calculations	because	the	computational	cost	of	the	former	is	much	lower.	For	this	

reason,	we	will	only	conduct	simulations	using	classical	potentials	in	this	section.	

Naturally,	the	quality	of	the	calculations	depends	on	the	accuracy	of	the	potentials.	A	

cottage	industry	has	grown	up	around	the	construction	of	classical	potentials,	which	

now	range	from	the	simplest	Lennard-Jones	pair	potentials	that	describe	noble	

gasses	to	elaborate	potentials	generated	by	genetic	algorithms	to	describe	

E
1
= E

1


x
i{ }()


x
i{ }


x
i{ }


x
i{ }

V =V

x
i{ }()


f j = −

∂V

xi{ }

∂

x j

	
	
	 	
	
	
	

3	

chemically	complex	phenomena	[see,	e.g.,	ACT	van	Duin	et	al.,	J.	Phys.	Chem.	A	112,	

11414	(2008)].	

	

Because	there	are	no	hard-and-fast	rules	for	creating	classical	potentials	or	even	for	

quantifying	their	uncertainty,	these	models	have	sometimes	been	referred	to	as	

“empirical”	potentials.	I	find	this	description	a	little	unfair	since—if	anything	at	all	

has	become	clear	about	potentials	during	the	~50	years	that	they	have	been	in	

use—it	is	that	the	ones	that	stand	the	test	of	time	were	built	directly	upon	some	

insight	concerning	the	physics	of	bonding	behavior	in	the	system	they	intend	to	

model.	Prototypical	examples	are	embedded	atom	method	(EAM)	potentials,	which	

are	probably	the	most	widely	used	of	all	potentials	and	were	motivated	directly	by	

density	functional	theory	(DFT)	[MS	Daw,	MI	Baskes,	Phys.	Rev.	B	29,	6443	(1984)].	

	

	

LAMMPS	on	HPRC	

Please	log	into	ada	using	a	VNC	session,	just	as	we	did	before	in	the	AtomEye	

tutorial.	Once	you’re	in,	issue	the	following	command:	

• ml	LAMMPS/24Oct2018-intel-2018b	

This	is	all	you	need	to	do	to	have	access	to	the	LAMMPS	executable	in	VNC.	You	may	

also	be	able	to	install	LAMMPS	on	your	own	computer.	See	lammps.sandia.gov	for	

details.	I	highly	recommend	perusing	the	LAMMPS	website,	whether	or	not	you	

want	to	install	it	on	your	computer.	LAMMPS	is	very	well	documented	and	there	is	a	

highly	responsive	user	community.	You	can	access	both	through	the	website.	

	

Running	an	energy	calculation	

	

We	will	begin	by	computing	the	energy	of	a	perfect	fcc	Cu	structure.	Create	

(anywhere	you	like)	a	new	directory	to	hold	the	calculation	(I	used	“fcc_Cu”).	Copy	

	
	
	 	
	
	
	

4	

into	that	directory	the	file	“Cu_mishin1.eam.alloy,”	provided	along	with	this	tutorial.	

This	file	contains	all	the	parameters	of	a	popular	EAM	potential	that	describes	the	

behavior	of	Cu.	If	you	were	to	install	LAMMPS	on	your	own	computer,	then	you	

would	have	at	your	disposal	a	directory	called	“potentials”	that	contains	

“Cu_mishin1.eam.alloy”	as	well	as	many	other	potentials	for	a	variety	of	materials.	

	

Also,	please	copy	into	your	directory	the	files	“in.lammps_energy”	and	

“Cu_structure.data.”	The	former	contains	a	set	of	instructions	that	tells	LAMMPS	

what	to	do	and	the	latter	is	a	model	of	perfect	crystalline	FCC	Cu.	Now	give	the	

following	command	to	run	LAMMPS:	

	

lmp -in in.lammps_energy
	

If	all	goes	well,	then	you	should	see	several	lines	of	output	ending	in	“Dangerous	

builds	=	0.”	The	content	of	this	output	is	also	written	to	a	file	called	“log.lammps.”	

Have	a	look	at	what’s	inside	this	file	and	compare	it	to	the	output	to	the	terminal	to	

convince	yourself	that	the	two	are	identical.	

	

About	midway	through	the	output,	you	should	see	a	line	that	reads	

	

Step Atoms Temp Press Volume PotEng KinEng TotEng

	

Except	for	the	first	entry,	“Step,”	each	of	these	corresponds	to	a	certain	physical	

quantity	characterizing	the	system	that	has	been	calculated	by	LAMMPS.	The	

meanings	should	be	fairly	clear,	e.g.	“Temp”	means	temperature,	“Press”	is	pressure,	

etc.	“Step”	tells	you	at	which	stage	of	the	simulation	the	quantities	were	calculated	

(in	a	simple	energy	calculation,	there	is	only	one	step,	numbered	zero).	

	

	
	
	 	
	
	
	

5	

The	following	line	contains	the	actual	numerical	values	computed	by	LAMMPS,	

given	in	the	same	order	as	the	labels	above.	For	example,	under	“Atoms”	we	have	

4000,	telling	us	that	the	atomic	structure	on	which	the	calculation	was	done	

contains	4000	atoms.	Under	“PotEng”	we	find	“-14160.873.”	The	energy	units	in	this	

calculation	are	eV.	Thus,	we	can	calculate	that	the	energy	per	atom	(the	cohesive	

energy)	of	fcc	Cu	is	Ecoh=14160.873/4000eV=3.54eV.	

	

Now,	open	the	atomic	structure	file,	“Cu_structure.data,”	using	your	favorite	text	

editor.	If	I	use	emacs	in	the	terminal	window,	here’s	what	I	see:	

	

	

	

As	you	can	tell,	this	structure	file	is	a	little	different	from	the	one	we	made	when	

using	AtomEye,	but	it	contains	the	same	ingredients:	

• The	third	line	contains	the	number	of	atoms	in	the	system	(4000).	This	file	

also	lists	the	number	of	atom	types	on	line	4	(just	one:	Cu).	

• Lines	6-8	contain	the	coordinates	of	the	unit	cube	that	defines	the	simulation	

cell.	Notice	that,	unlike	in	the	.cfg	format,	the	simulation	cell	shape	is	not	

specified	as	a	matrix	of	vectors.	In	fact,	for	this	file	format,	LAMMPS	assumes	

that	the	system	is	inside	an	orthorhombic	cell,	i.e.	that	the	vectors	that	define	

	
	
	 	
	
	
	

6	

its	edges	are	orthogonal	to	each	other	and	aligned	with	the	x-,	y-,	and	z-axes.	

Thus,	all	you	really	need	to	specify	is	the	length	of	each	edge,	which	is	what	

the	lines	here	do.	All	lengths	are	in	Å.	

• Line	12	gives	the	atomic	mass	of	Cu.	

• Lines	16	and	onward	are	quantities	given	for	individual	atoms.	The	first	

entry	in	each	line	is	just	the	atom	index	(in	this	case,	it	goes	from	1	to	4000	as	

you	proceed	down	the	column).	The	second	is	the	atom	type	(here,	all	atoms	

are	of	the	same	type:	1,	i.e.	Cu).	The	third,	fourth,	and	fifth	entries	are	the	x-,	

y-,	and	z-coordinates	of	the	atom.	Note	that	unlike	in	the	.cfg	format,	all	the	

coordinates	are	given	in	Å,	not	in	reduced	units!	

	

Next,	we	will	create	some	crystal	defects	and	find	their	energies.	I	will	initially	work	

with	two	types	of	point	defects:	vacancies	and	self-interstitials	atoms	(SIAs).	In	case	

it’s	been	a	while	since	you’ve	thought	about	them,	I’ve	included	some	slides	along	

with	this	tutorial	that	will	give	you	something	of	a	crash	course.	

	

We	learned	in	the	last	tutorial	that	you	can	create	a	vacancy	by	simply	removing	an	

atom.	I	do	that	by	deleting	row	16	(actually,	it	doesn’t	matter	which	row	you	delete,	

since	the	system	is	under	periodic	boundary	conditions)	and	change	the	total	

number	of	atoms	to	3999	in	line	three.	Now	my	file	looks	like	this:	

	

	
	
	 	
	
	
	

7	

	

	

Keeping	the	name	of	the	file	unchanged	(still	“Cu_structure.data”),	I	recalculate	the	

energy	by	running	LAMMPS.	Now	I	get	an	energy	of	-14156.024eV.	Comparing	this	

to	the	energy	of	perfect	fcc	Cu,	I	see	that	the	energy	has	increased	by	DE=4.85eV.	Is	

this	the	vacancy	formation	energy?	No.	The	creation	of	a	vacancy	is	the	removal	of	

an	atom	from	a	perfect	crystal	and	its	placement	on	a	free	surface.	The	latter	part	

recovers	some	of	the	energy	needed	to	break	bonds	during	atom	removal.	

	

While	we	could	explicitly	model	a	free	surface	and	put	the	extra	atom	on	it,	the	

effect	of	doing	so	is	simply	to	recover	an	amount	of	energy	equal	to	the	cohesive	

energy	of	Cu.	We	already	know	from	our	first	calculation	that	this	is	equal	to	3.54	

eV.	Thus,	the	vacancy	formation	energy	is:	

	

.	

	

This	compares	well	with	the	experimentally	measured	value,	 .	

	

ΔEv

f
= ΔE −3.54eV =1.31eV

ΔEv

f
=1.28eV

	
	
	 	
	
	
	

8	

Similarly,	we	could	introduce	a	SIA	into	the	picture	and	calculate	its	energy.	I	

created	a	[001]	split	dumbbell	by	adding	two	atoms	to	the	vacant	site	from	the	last	

structure	file.	My	file	looks	like	this:	

	

	

	

Note	that	my	file	now	has	4001	atoms	and	I	labeled	the	atom	in	the	first	row	4001.	

This	is	allowed:	the	atom	indices	do	not	have	to	be	in	any	particular	order.	Also	

notice	that	I	made	the	split	dumbbell	by	having	one	atom	displaced	by	-1Å	in	the	z-

direction	from	the	location	of	the	vacant	size	(which	is	at	the	origin)	and	the	other	

displaced	by	1Å	in	the	z-direction.	I	have	no	way	of	knowing	in	advance	that	these	

are	the	right	distances	for	the	members	of	the	dumbbell—I	just	do	my	best	to	guess.	

The	next	section	will	show	how	you	can	get	the	correct	separation	between	these	

atoms.		

	

I	compute	the	energy	of	this	system	and	compare	it	to	the	energy	of	a	perfect	crystal.	

Creating	an	interstitial	means	removing	an	atom	from	the	surface,	which	costs	

energy.	In	fact,	it	costs	exactly	one	cohesive	energy.	Thus,	I	find	an	interstitial	

formation	energy	of	

.	ΔEi

f
= ΔE +3.54eV = 9.11eV

	
	
	 	
	
	
	

9	

	

This	value	far	exceeds	the	one	determined	by	first	principles	calculations:	∆"!" =
3.23'(.	Could	this	be	a	flaw	in	the	potential?	Fortunately,	in	this	case	it	is	not.	The	
high	energy	arises	from	the	fact	that	the	defect	structure	we	created	is	quite	far	

from	being	in	mechanical	equilibrium	and	is	therefore	in	a	high-energy	state.	

	

	

Running	an	energy	minimization	

	

The	solution	to	the	problem	of	a	non-equilibrium	atomic	structure	is	to	displace	all	

the	atoms	such	the	energy	of	the	system	(as	computed	from	the	potential)	reaches	

its	nearest	minimum.	In	this	state,	the	first	derivative	of	the	potential	with	respect	to	

any	atomic	coordinate	is	zero	(this	must	be	true	because	that’s	what	defines	being	in	

a	minimum!).	Since	the	forces	on	atoms	are	proportional	to	the	derivatives	of	the	

potential,	an	atom	in	a	minimum	energy	state	is	also	one	where	there	is	no	net	force	

acting	on	any	atom.	A	popular	way	to	minimize	energies	of	atomic	aggregates	is	the	

conjugate	gradient	method.	You	can	learn	more	about	it	from	DP	Bertsekas,	

Nonlinear	Programming,	Athena	Scientific,	1999.	

	

To	perform	an	energy	minimization	on	the	interstitial	structure	we	constructed	

above,	use	the	“in.lammps_minimize”	provided	with	this	tutorial	and	run	

	

lmp -in in.lammps_minimize
	

The	simulation	may	now	take	a	second	or	two	to	run	and	will	generate	several	steps	

of	output	(probably	about	50	or	so).	The	last	step	gives	you	the	final	energy	of	the	

system.	With	this	result,	I	compute	the	interstitial	formation	energy	using	the	same	

formula	as	before	and	get	

	

	
	
	 	
	
	
	

10	

∆"!" = ∆" + 3.54'(= 3.08'(,	
	

which	is	much	closer	to	the	value	determined	by	first	principles	(within	acceptable	

error).	

	

A	similar	calculation	carried	out	on	the	vacancy	causes	its	formation	energy	to	be	

revised	downward	to	∆"!# = 1.27'(,	i.e.	not	by	nearly	as	much	as	in	the	case	of	the	
interstitial.	The	reason	is	that	the	atoms	around	a	vacancy	relax	inward	only	slightly	

(they	are	close	to	equilibrium	to	begin	with).	Interstitials,	however,	cause	much	

greater	elastic	distortion	in	the	crystal	than	do	vacancies,	so	the	one	I	created	

(which	did	not	have	any	distortion	associated	with	it)	was	actually	initially	much	

further	from	equilibrium.	What	do	you	think	would	happen	if	I	ran	energy	

minimization	on	a	perfect	(defect-free)	fcc	Cu	crystal?	

	

One	of	the	things	we	get	for	free	when	we	perform	an	energy	minimization	are	the	

coordinates	of	the	atoms	in	their	lowest	energy	state.	The	LAMMPS	minimization	

command	I	gave	you	outputs	those	coordinates	in	a	file	called	“Cu_minimized.*.cfg,”	

where	“*”	is	replaced	by	the	number	of	steps	it	took	to	minimize	the	energy	of	the	

system.	The	file	is	in	the	.cfg	format	that	we	already	discussed.	It	may	be	visualized	

directly	using	AtomEye.	Here	are	some	AtomEye	visualizations	that	I	made	of	my	

relaxed	[001]	split	dumbbell:	

	

	
	
	 	
	
	
	

11	

	

	

The	picture	of	the	left	is	what	the	system	looks	like	when	I	start	up	the	visualization.	

Since	I	added	the	interstitial	close	to	the	origin,	it	actually	crosses	over	the	periodic	

boundaries	and	is	therefore	hard	to	see	clearly.	If	I	move	the	system	under	periodic	

boundary	conditions,	I	get	the	picture	on	the	right,	which	shows	the	interstitial	

much	more	clearly.	

	

	

Other	calculations	using	LAMMPS	

	

LAMMPS	is	capable	of	performing	many	other	kinds	of	calculations	besides	energy	

minimization.	The	energy	and	energy	minimization	calculations,	however,	are	good	

starting	points,	if	you’re	new	to	LAMMPS.	However,	I	certainly	do	encourage	you	to	

peruse	the	LAMMPS	website,	especially	the	“LAMMPS	commands”	section,	which	

tells	you	about	the	content	of	the	“in.lammps_*”	files	I	gave	you:	

	

http://lammps.sandia.gov/doc/Section_commands.html#comm	

	

You	may	also	be	interested	in	running	some	other	LAMMPS	sample	problems.	You	

can	find	a	list	at	

	

	
	
	 	
	
	
	

12	

http://lammps.sandia.gov/doc/Section_example.html	

	

The	files	you	need	to	run	them	are	in	the	“examples”	directory,	which	comes	with	

the	LAMMPS	package	that	you	can	download	from	the	website.	

	

	
	
	 	
	
	
	

1	

TUTORIAL	3	(by	M.	J.	Demkowicz,	all	rights	reserved)	

	

	

PERFORMING	MOLECULAR	DYNAMICS	SIMULATIONS	IN	LAMMPS	

	

Molecular	dynamics	(MD)	is	a	type	of	atomistic	simulation.	In	it,	Newton’s	2nd	law	

(f=ma)	is	used	to	generate	atomic	trajectories	as	a	function	of	time.	To	run	MD	

simulations,	you	need	to	know	the	forces	(f)	acting	on	all	the	atoms.	These	can	come	

from	classical	potentials	or	from	first	principles	calculations,	such	as	density	

functional	theory	(DFT).	

	

Supposing	you	have	all	the	atomic	forces,	you	can	get	the	atomic	trajectories	by	

solving	the	set	of	coupled	ordinary	differential	equations	(ODEs)	

	

!!
""#⃗!
"%" = '⃗! 	

	

Here,	#⃗! 	is	a	vector	describing	the	position	of	atom	i,	'⃗! 	is	the	force	on	that	atom,	and	
!! 	is	the	mass	of	the	atom.	If	there	are	N	atoms,	then	there	are	N	equations	of	the	

type	given	above,	all	of	which	have	to	be	solved	simultaneously	because	they	are	

coupled.	The	coupling	between	them	comes	from	the	fact	that	the	force	acting	on	

any	atom	depend,	in	general,	on	the	positions	of	all	the	other	atoms.	

	

In	most	cases	of	interest,	the	equations	given	above	cannot	be	solved	analytically.	

Thankfully,	they	are	relatively	easy	to	solve	numerically.	A	description	of	some	

common	methods	used	to	solve	these	equations	may	be	found	in	standard	intro	

books	on	MD.	My	favorite	if	Allen	and	Tildesley’s	“Computer	Simulation	of	Liquids”	

(Oxford,	2000).	These	techniques	are	not	so	difficult	to	learn.	However,	you	don’t	

	
	
	 	
	
	
	

2	

have	to	become	expert	in	them	if	you	just	want	to	get	started	on	some	simple	MD	

simulations	because	they	are	already	implemented	in	LAMMPS.	

	

	

MD	simulation	of	thermal	motion	

	

Let’s	run	a	simple	MD	simulation	in	LAMMPS	where	we	just	look	at	atoms	moving	

around	via	thermal	vibration	at	300K.	We	will	use	the	same	initial	structure	and	

potential	file	as	in	the	previous	tutorial	on	energy	minimization.	To	run	the	

simulation,	issue	the	following	command:	

	

lmp -in in.lammps_therm	

	

This	run	should	take	a	few	seconds	to	complete.	After	it’s	done,	you	should	have	a	

bunch	of	*.cfg	files	in	your	directory.	These	are	snapshots	of	the	structure	taken	at	

increments	of	10	time	steps.	The	simulation	is	set	up	to	run	for	1000	time	steps,	so	

you	should	have	100	snapshots.	By	default,	the	timestep	LAMMPS	uses	in	metals	is	

1fs,	so	our	simulation	models	1ps	of	time	for	this	atomic	model.	

	

Let’s	make	a	movie	out	of	these	files	using	AtomEye.	To	that	end,	we	will	use	a	file	

named	“scr_anim”	(provided).	Create	a	new	directory	called	“Str”	and	put	all	of	your	

*.cfg	files	into	it.	Next,	create	another	directory	called	“Pic.”	Now	use	AtomEye	to	

open	any	of	the	*.cfg	files	in	your	Str	directory.	Orient	it	any	way	you	like	that	helps	

you	best	see	the	crystal.	Now	press	the	button	“y.”	AtomEye	will	run	a	movie	where	

frames	are	the	successive	snapshots	of	our	MD	simulations.	Simultaneously,	

AtomEye	will	also	create	*.jpg	files	of	each	frame	in	the	Pic	directory.	You	can	

convert	these	frames	into	a	stand-alone	movie	file	with	MATLAB	using	the	script	

“jpgmov.m,”	which	I’ve	also	provided	to	you.	

	
	
	 	
	
	
	

3	

	

MD	simulation	of	melting	

	

Now	let’s	run	an	MD	simulation	of	melting	by	issuing	the	following	command:	

	

lmp -in in.lammps_melt	

	

This	simulation	will	take	even	longer	to	run	than	the	previous	one	because	we	are	

simulating	a	whopping	10ps	of	atomic	trajectories.	You	can	actually	halve	the	

amount	of	time	it	takes	this	simulation	to	run	by	running	it	in	parallel	mode	using	

two	processors:	

	

mpirun –np 2 lmp -in in.lammps_melt	

	

To	use	more	processors,	you	would	change	the	“2”	in	the	above	command	to	the	

number	of	processors	you	want	to	use.	Note	as	you	increase	the	number	of	

processors,	the	speedup	you	get	becomes	smaller	and	smaller,	so	it	doesn’t	make	

sense	to	increase	this	number	indefinitely.	Rather,	you	want	to	find	an	optimal	

number	that	runs	the	code	fast	without	using	up	too	much	computing	resources	

(which	are	finite!).	Also	note	that	I’ve	changed	the	snapshot	frequency	to	once	every	

1000	time	steps.	You	can	use	these	to	make	a	movie,	but	the	movie	would	have	only	

10	frames	and	it	would	look	very	choppy	because	the	structure	is	changing	

dramatically	between	frames.	

	

Let’s	take	a	look	at	the	log.lammps	output	file	for	this	simulation.	Look	for	the	

following	line:	

	

Step Atoms Temp Press Volume PotEng KinEng TotEng Pxx Pyy Pzz Pxy Pxz Pyz
	

	
	
	 	
	
	
	

4	

The	entries	below	it	give	you	all	kinds	of	interesting	physical	info	about	the	state	of	

the	system	during	the	run:	

• Step:	number	of	timesteps	so	far	
• Atoms:	number	of	atom	(constant,	in	our	simulation)	
• Temp:	temperature	(in	K)	
• Press:	pressure	(in	bar)	
• Volume:	volume	(in	A3)	
• PotEng:	total	potential	energy	(in	eV)	
• KinEng:	total	kinetic	energy	(in	eV)	
• TotEng:	total	energy	(sum	of	potential	and	kinetic):	
• Pxx	Pyy	Pzz	Pxy	Pxz	Pyz:	the	six	independent	components	of	the	pressure	

tensor	of	the	model	
	

Let’s	plot	these	quantities.	To	that	end,	I	suggest	deleting	all	the	text	above	and	

below	output	data	and	using	the	“dlmread”	command	in	MATLAB	to	read	in	the	file.	

You	can	try	making	lots	of	different	plots,	but	the	one	I’d	really	like	to	draw	your	

attention	to	is	the	plot	of	volume	per	atom	vs.	temperature,	shown	below.	As	you	

can	see,	the	volume	initially	increases	approximately	linearly	with	temperature.	

This	behavior	is	known	as	thermal	expansion.	Then,	in	a	range	of	temperatures	

between	about	1700K	and	1900K,	the	volume	expands	rapidly.	At	even	higher	

temperatures,	the	volume	continues	to	expand,	but	now	at	a	rate	close	to	the	one	it	

had	initially.	

	

	
	
	 	
	
	
	

5	

	

	

What	happens	during	the	temperature	range	where	the	volume	expands	rapidly?	To	

find	out,	let’s	use	AtomEye	to	visualize	one	of	the	higher	temperature	structures,	say	

at	17000	time	steps,	as	shown	below.	

	

	
	
	 	
	
	
	

6	

	

	

This	structure	is	clearly	no	longer	crystalline.	Indeed,	it	is	liquid.	The	rapid	rise	in	

volume	that	we	saw	is	just	a	consequence	of	the	1st-order	phase	change	from	solid	

to	liquid	(the	liquid	is	less	dense,	so	the	volume	expands).	To	be	more	rigorous	in	

confirming	that	this	is	indeed	Cu	in	its	molten	state,	we	should	compute	the	atomic	

mobility	and	see	that	it	is	large	(unlike	in	a	solid,	atoms	in	a	liquid	are	not	fixed	to	a	

lattice	site	and	move	around	much	more	freely).	

	

Challenge	questions:	

• The	thermodynamic	melting	temperature	of	Cu	is	1358K,	so	why	do	we	see	

melting	occurring	in	the	much	higher	temperature	range	between	1700K	and	

1900K?	

• Melting	of	crystalline	Cu	is	a	1st-order	phase	transition,	meaning	that	it	is	

associated	with	a	discontinuous	change	in	intensive	quantities,	such	as	

	
	
	 	
	
	
	

7	

density.	Why,	then	does	the	change	in	volume	between	1700K	and	1900K	

appear	to	be	gradual?	

• How	might	you	use	this	simulation	to	estimate	the	heat	of	fusion	in	Cu?	

	

