ACES: AI TechLab in Jupyter Notebooks

Accelerating AI/ML Workflows on a Composable Cyberinfrastructure

Zhenhua He 02/18/2025

ĂЙ

High Performance Research Computing DIVISION OF RESEARCH

Al TechLab

Lab I. JupyterLab (30 mins)

We will load required modules and activate virtual environment and run JupyterLab on HPRC ACES portal.

Lab II. Data Exploration (30 mins)

We will go through some examples with two popular Python libraries: Pandas and Matplotlib for data exploration.

ĂМ

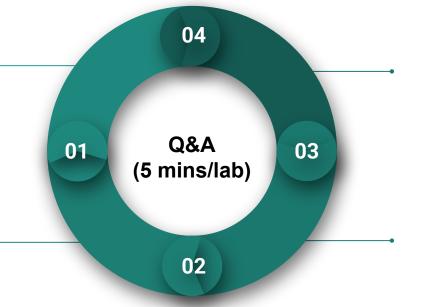


Figure 1. Structure of the AI TechLab.

Lab IV. Deep Learning (30 minutes)

We will learn how to use PyTorch to build and train a simple image classification model with deep neural network (DNN).

Lab III Machine Learning (30 minutes)

We will learn to use scikit-learn library for linear regression and classification applications.

Lab I. JupyterLab

Files	+	± C	■ Lorenz.ipynb × ■ Terminal 1 × ■ Console 1 × ■ Data.ipynb × ♥ README.md × ■ + % □ ▶ ■ C Code × Python 3 (Code ×)	
	Name	Last Modified	In this Notebook we explore the Lorenz system of differential equations:	
5 IIIIII IIIII	 Data.ipynb Fasta.ipynb Julia.ipynb 	an hour ago a day ago a day ago	$\dot{x} = \sigma(y - x)$ $\dot{y} = \rho x - y - xz$ $\dot{z} = -\beta z + xy$	
2	Lorenz.ipynb	seconds ago	2 - 12 - 123	
	 R.ipynb iris.csv lightning.json lorenz.py 	a day ago a day ago 9 days ago 3 minutes ago	<pre>Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points, called attractors. In [4]: from lorenz import solve_lorenz t, x_t = solve_lorenz(N=10)</pre>	
			Cutput View X	
sopi			sigma 10.00 9 def solve_lorenz(N=10, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0): beta 2.67 10 """Plot a solution to the Lorenz differential equations.""" rho 2.67 12 ax = fig.add_axes([0, 0, 1, 1], projection='3d') ax.axis('off') 14 15 # prepare the axes limits 16 ax.set_xLim((-25, 25))	
			<pre>17 ax.set_ylim((-35, 35)) 18 ax.set_zlim((-35, 35)) 19 20 def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho): 21 """Compute the time-derivative of a Lorenz system.""" 22 x, y, z = x_y_z 23 return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z] 24 25 # Choose random starting points, uniformly distributed from -15 to 15 26 np.random.seed(1) 27 x0 = -15 + 30 * np.random.random((N, 3)) 28 </pre>	

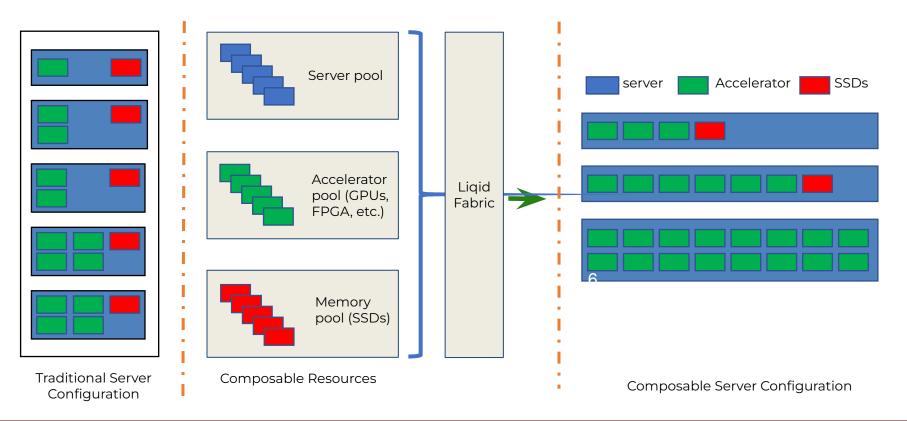
High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ĀМ

L1 - Resources

- Texas A&M High Performance Research Computing (HPRC)
- ACES Quick Start Guide
- ACES Portal (ACCESS)
- ACCESS Documentation
- HPRC YouTube Channel
- help@hprc.tamu.edu

NSF ACES


Accelerating Computing for Emerging Sciences

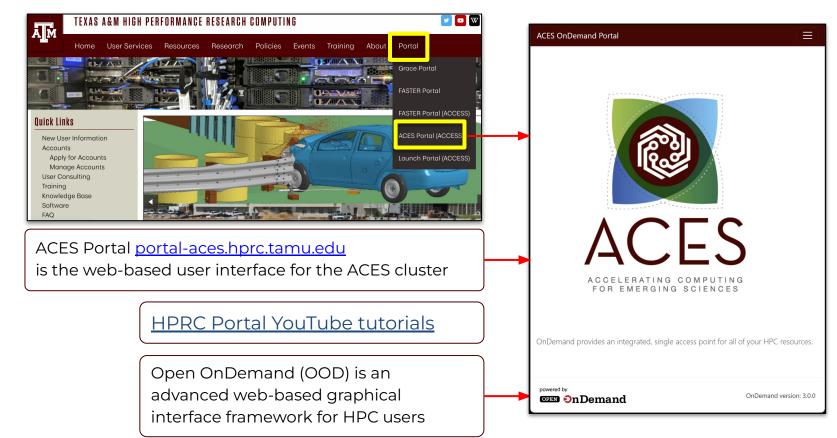
Our Mission:

- NSF ACSS CI testbed
- Offer an accelerator testbed for numerical simulations and AI/ML workloads
- Provide consulting, technical guidance, and training to researchers
- Collaborate on computational and data-enabled research.

Design: Composability at the Hardware Level

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

A M


ACES Accelerators/Components

Component	Quantity	Description					
Graphcore IPU	32	16 Colossus GC200 IPUs, 16 Bow IPUs. Each IPU group hosted with a CPU serve as a POD16 on a 100 GbE RoCE fabric					
FPGAs:							
Intel PAC D5005	2	Accelerator with Intel Stratix 10 GX FPGA and 32 GB DDR4					
BittWare IA-840F	3	Accelerator with Agilex AGF027 FPGA and 64 GB of DDR4					
NextSilicon Coprocessor	2	Reconfigurable accelerator with an optimizer continuously evaluating application behavior.					
NEC Vector Engine	8	Vector computing card (8 cores and HBM2 memory)					
Intel Optane SSD	48	18 TB of SSDs addressable as memory w/ MemVerge Memory Machine.					
NVIDIA GPUs:							
H100	30	For HPC, DL Training, Al Inference					
A30	4	For AI Inference and Mainstream Compute					
Intel PVC GPUs	120	Intel GPUs for HPC, DL Training, Al Inference					

Refer to our **Knowledge Base** for more: <u>https://hprc.tamu.edu/kb/User-Guides/ACES/Hardware/</u>

Ā M

ACES Portal

Accessing ACES via the Portal (ACCESS)

9

ALLOCATIONS SUPPORT OPERATIONS METRICS • Q =	Login ACCESS If you had an XSEDE account, please enter your XSED username and password for ACCESS login.
Consent to Attribute Release	ACCESSID
TAMU ACES ACCESS OIDC requests access to the following information. If you do not approve this request, do not proceed. • Your ClLogon user identifier • Your small address • Your small address	ACCESS Password
Your username and affiliation from your identity provider	LOGIN
ACCESS CI (XSEDE)	Register for an ACCESS ID Forgot your password?
Select the Identity Provider appropriate for your account.	Log in using your ACCES institutional credential

ĂМ

Get a Shell on ACES

Click on "Clusters" menu → _aces Shell Access

Success!

Welcome to the ACES login node.

Check which login node you are on.

АМ

Host: login.aces				Themes:	Default
Consulting: ACES Documentation: FASTER Documentation: Grace Documentation: Terra Documentation: YouTube Channel:	help@hprc.tamu.edu https://hprc.tamu.e https://hprc.tamu.e https://hprc.tamu.e https://hprc.tamu.e https://www.youtube	du/kb/Use du/kb/Use du/kb/Use du/kb/Use .com/texa	r-Guides/ACE r-Guides/FAS r-Guides/Gra r-Guides/Ter samhprc	S TER ce lora	
=======================================					
*****	*****	******	*****	*****	
	MPORTANT POLICY INFO			×	<
* – Unauthorized use of I		ohibited	and subject	to ×	<
* criminal prosecution		· · · · · · · · ·	a provincia de la ca	k	
 * - Use of HPRC resources * laws and regulations 					
* US citizens and lega				s are a	
* - Sharing HPRC account			in violation		
* Texas State Law. Any				×	<
* - Authorized users mus				k	
* ht *****	tps://hprc.tamu.edu/			k	<
******	*****	******	*****	****	
<pre>!! WARNING: THERE ARE</pre>	ONLY NIGHTLY BACKUP	'S OF USER	HOME DIRECT	ORIES. !!	
	age to <u>8 CORES</u> acros lation of this polic				
To see these our current disk quotas a	messages again, run re:	the <u>motd</u>	command.		
isk home/u.zh108696 scratch/user/u.zh108696 ype 'showquota' to view t u.zh108696 <mark>0</mark> aces-login1 ~]:	Disk Usage 4.0G 275.4G hese quotas again.	Limit 10.0G 1.0T	File Usage 2361 352057	Limit 10000 1000000	

Commands to copy the materials

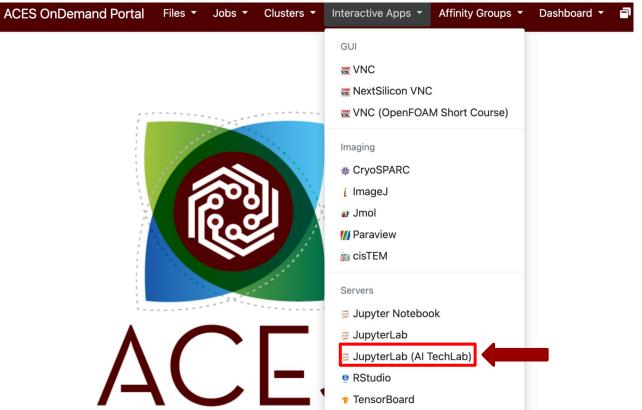
• Navigate to your personal scratch directory

\$cd \$SCRATCH

• Files for this course are located at

/scratch/training/ai_tech_labs_25s

Make a copy in your personal scratch directory


\$ cp -r /scratch/training/ai_tech_labs_25s \$SCRATCH

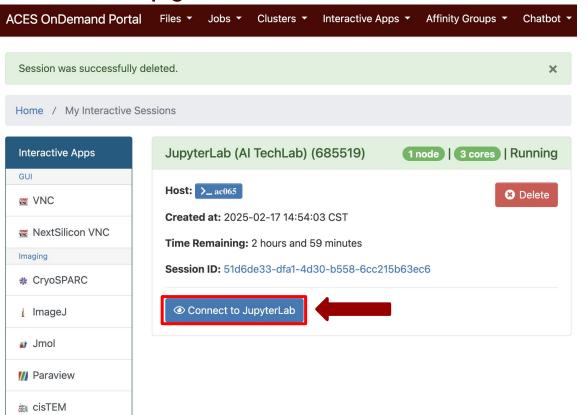
• Enter this directory (your local copy)

\$cd ai tech labs 25s

Go to JupyterLab Page

ĀМ

JupyterLab Page

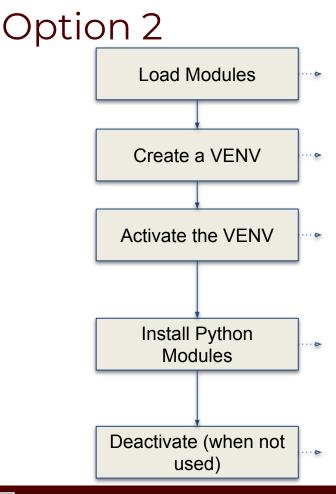

	ACES OnDemand Portal	Files 🔻 Jobs 🔻	Clusters -	Interactive Apps 👻	Affinity Groups	Chatbot 🔻	Dashboard
	Home / My Interactive	e Sessions / Jupyt	erLab				
	Interactive Apps	JupyterLa This app will lau cluster.		rLab server on the AC	ES		
Other fields: Node Type: First availab	NextSilicon VNC	Module Anaconda3/2	2024.02-1	4	v		
Number of GPUs: 1 Number of hours: 3	* CryoSPARC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Anaconda3/20	activated 24.02-1/envs/ai-labs of the environment to be		Option: Us created by	
Number of cores: 3 Total memory (GB): 5	🥔 Jmol	activated.		environment for the se	elected	-	
	M Paraview			ent must have been pro a or Python modules lis	/sw/hpi eviously	the share c/sw/Ana	
	Servers	the Module opti					

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

14

ĀМ

Connect to JupyterLab


Ă M

Review and Exercise

- Log into ACES through ACES Portal (ACCESS)
- Copy the training materials to your \$SCRATCH directory
- Launch JupyterLab app
- In the notebook named *01_Jupyterlab.ipynb*, follow the instructions to import the

required modules to make sure they have been loaded properly.

⊠L	auno	cher				×		01_J	upyterlab.ipynb	×	+		
8	+	Ж	Ū	Ċ	•	ж.	C	**	Markdown 🗸			Python 3 (ipykerne)) O
	[]:							and click [Shift . TechLab!")	+Ente	r]	to execute	
	[]:	# te # wi	st n ite			de b	elow	/				
			► CI	ick ł	nere	to s	ee s	olut	ion				
	[]:	# te # wi	est p rite			de b	elow	/				
			•										- 1
			СІ	ick h	nere	to s	ee s	olut	ion				

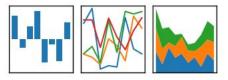
ĀМ

clean up and load Anaconda
cd \$SCRATCH
module purge
module load Anaconda3/2022.05

create a Python virtual environment
conda create -n ai-labs

activate the virtual environment
source activate ai-labs

install required package to be used in the portal conda install -c anaconda jupyter conda install -c anaconda pandas conda install -c conda-forge matplotlib conda install -c anaconda scikit-learn conda install -c conda-forge transformers conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia


deactivate the virtual environment
source deactivate

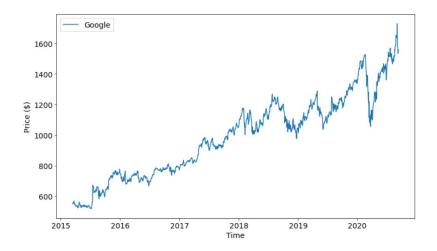
Lab II. Data Exploration

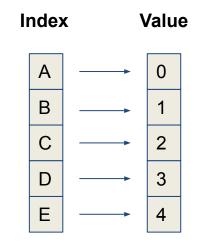
matpletlib

Ā M

Data Structures

Pandas has two data structures that are descriptive and

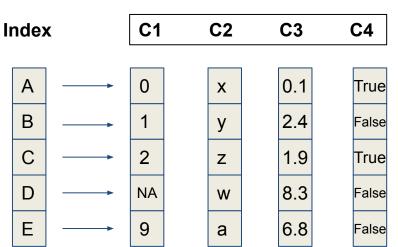

optimized for data with different dimensions.


- Series: 1D labeled array
- DataFrame: General 2D labeled, size-mutable tabular

structure with potentially heterogeneously-typed columns

Series in pandas

- One-dimensional labeled array
- Capable of holding any data type (integers, strings, floating point numbers, etc.)
- Example: time-series stock price data



DataFrame in pandas

- Primary Pandas data structure
- A dict-like container for Series objects
- Two-dimensional size-mutable
- Heterogeneous tabular data structure

А	В	С	D	E	F	G	н
id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
7129300520	20141013T0	221900	3	1	1180	5650	1
6414100192	20141209T0	538000	3	2.25	2570	7242	2
5631500400	20150225T0	180000	2	1	770	10000	1
2487200875	20141209T0	604000	4	3	1960	5000	1
1954400510	20150218T0	510000	3	2	1680	8080	1
7237550310	20140512T0	1.23E+06	4	4.5	5420	101930	1
1321400060	20140627T0	257500	3	2.25	1715	6819	2
2008000270	20150115T0	291850	3	1.5	1060	9711	1
2414600126	20150415T0	229500	3	1	1780	7470	1

Ā M

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Columns

Pandas Learning Objectives

After this lesson, you will know how to:

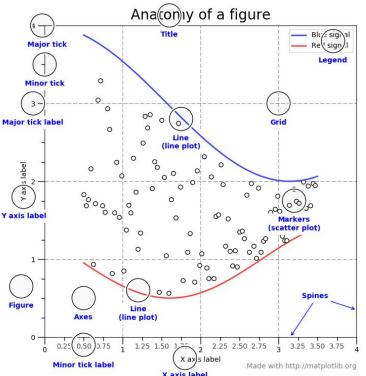
- Create a DataFrame
- Retrieve a Row or Column
- Drop Entries
- Index, Select, and Filter data
- Sort data

ĂМ

• Input and Output

Key Plotting Concepts in Matplotlib

Matplotlib: Figure


Figure is the object that keeps the whole image output. Adjustable parameters include:

- 1. Image size (set_size_inches())
- 2. Whether to use tight_layout (set_tight_layout())

• Matplotlib: Axes

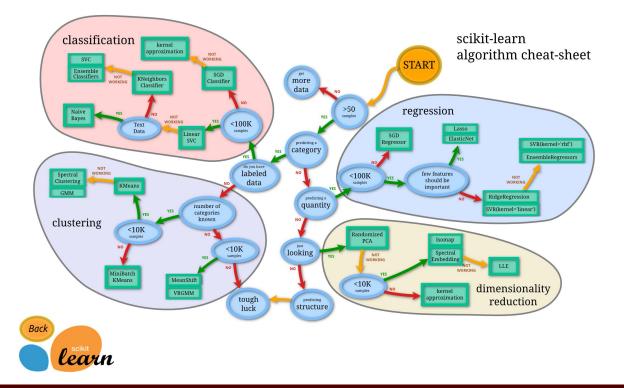
Axes object represents the pair of axis that contain a single plot (x-axis and y-axis). The Axes object also has more adjustable parameters:

- The plot frame (set_frame_on() or set_frame_off())
- X-axis and Y-axis limits (set_xlim() and set_ylim())
- X-axis and Y-axis Labels (set_xlabel() and set_ylabel())
- 4. The plot title (set_title())

(Credit: matplotlib.org)

Matplotlib Learning Objectives

After this lesson, you will know how to create:


- Scatter plot and Line plot
- Subplots
- Color map
- Contour figures
- 3D figures

ĂМ

- Surface plots
- Wire-frame plot
- Contour plots with projections

JupyterLab Exercises ج

Lab III. Machine Learning

Main Features of scikit-learn

Classification	Regression	Clustering	Dimension Reduction	Model Selection	Preprocessing
Identifying category of an object	Predicting a attribute for an object	Grouping similar objects into sets	Reducing the number of dimensions	Selecting models with parameter search	Preprocessing data to prepare for modeling
Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest, and more	Applications: Drug response, Stock prices. Algorithms: SVR, nearest neighbors, random forest, and more	Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, and more	Applications: Visualization, Increased efficiency Algorithms: k-Means, feature selection, non-negative matrix factorization, and more	Applications: Improved accuracy via parameter tuning Algorithms: grid search, cross validation, metrics, and more	Applications: Transforming input data such as text for use with machine learning algorithms. Algorithms: preprocessing, feature extraction, and more
$\overline{}$	E %	°		$\hat{\mathbf{r}}$	᠕᠕

6

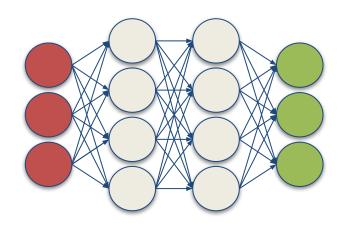
JupyterLab Exercises

0

0 \ 0

Lab IV. Deep Learning

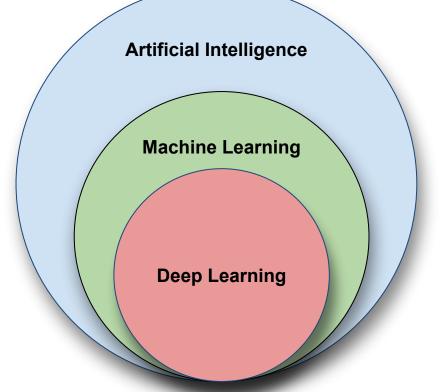
Deep Learning


by Ian Goodfellow, Yoshua Bengio, and Aaron Courville http://www.deeplearningbook.org/

Animation of Neutron Networks

by Grant Sanderson <u>https://www.3blue1brown.com/</u>

Visualization of CNN

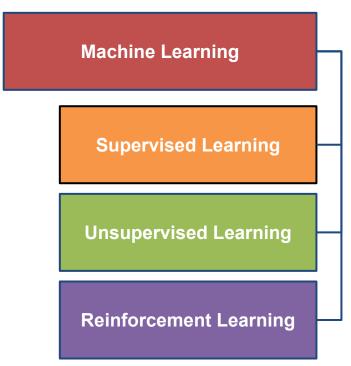

by Adam Harley <u>https://adamharley.com/nn_vis/cnn/3d.html</u>

Relationship of AI, ML, and DL

- Artificial Intelligence (AI) is anything about man-made intelligence exhibited by machines.
- Machine Learning (ML) is an approach to achieve AI.
- **Deep Learning (DL)** is one technique to implement **ML**.

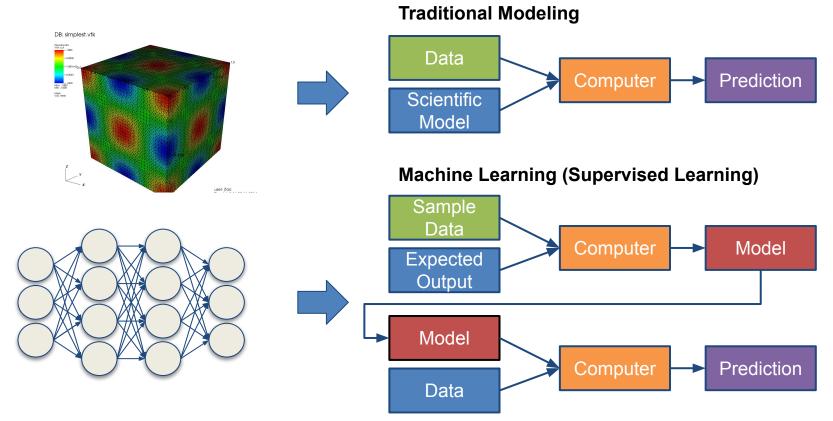
Types of ML Algorithms

• Supervised Learning

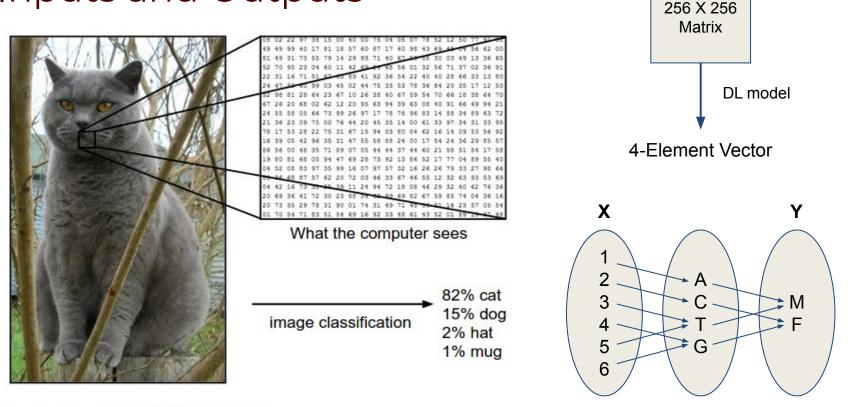

 trained with labeled data; including regression and classification problems

• Unsupervised Learning

 trained with unlabeled data; clustering and association rule learning problems.


Reinforcement Learning

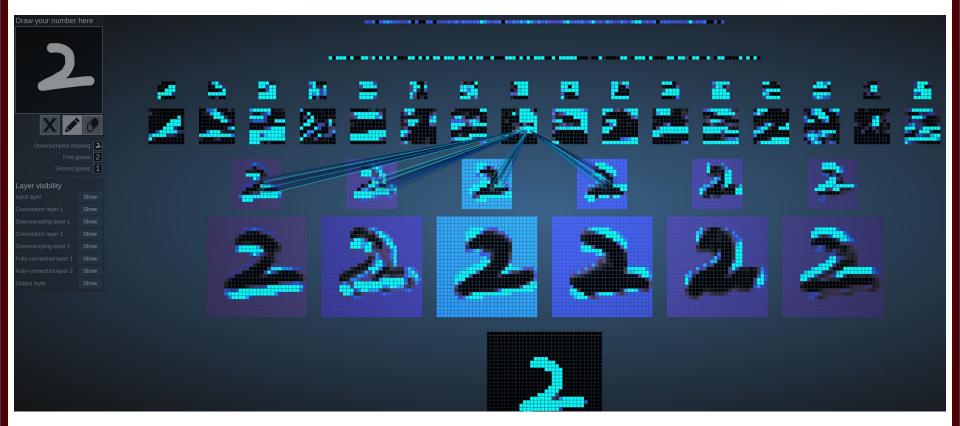
 no training data; stochastic Markov decision process; robotics and business strategy planning.



Machine Learning

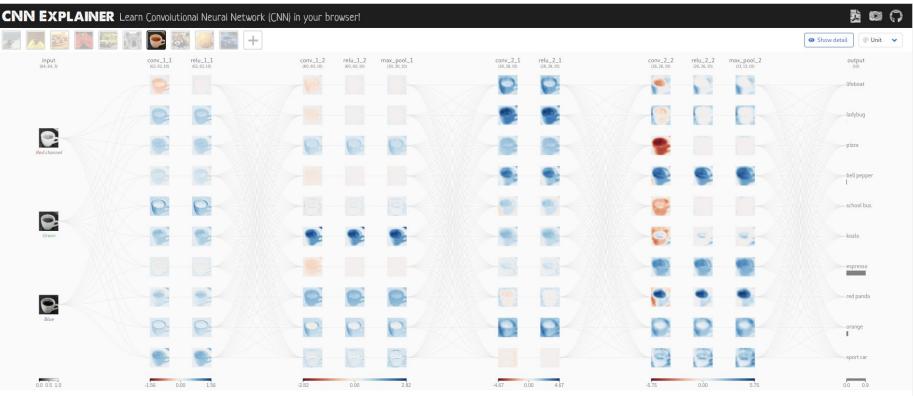
ĀМ

Inputs and Outputs



With deep learning, we are searching for a **surjective** (or **onto**) function **f** from a set **X** to a set **Y**.

Image from the Stanford CS231 Course


M

MNIST - CNN Visualization

(Image Credit: https://adamharley.com/nn_vis/cnn/3d.html)

CNN Explainer

(Image Credit: <u>https://poloclub.github.io/cnn-explainer/</u>)

ĀМ

JupyterLab Exercises

Need Help?

First check the FAQ: https://hprc.tamu.edu/kb/FAQ/Accounts

- ACES user Guide: <u>https://hprc.tamu.edu/kb/User-Guides/ACES</u>
- Email your questions to help@hprc.tamu.edu

Dashboard!

Need Help?

Help us help you -- tell us:

- Which cluster
- Username
- Job id(s) if any
- Location of your jobfile, input/output files
- Application used if any
- Module(s) loaded if any
- Error messages
- Steps you have taken, so we can reproduce the problem

https://hprc.tamu.edu

HPRC Helpdesk:

help@hprc.tamu.edu Phone: 979-845-0219

https://u.tamu.edu/hprc_shortcourse_survey

Help us help you. Please include details in your request for support, such as, Cluster (ACES, FASTER, Grace, Launch), NetID (UserID), Job information (JobID(s), Location of your jobfile, input/output files, Application, Module(s) loaded, Error messages, etc), and Steps you have taken, so we can reproduce the problem.